Blog

This blog showcases educational and inspirational content related to art, design, process, and more.

Autonomous, self-contained soft robotic fish at MIT. Soft robots — which don’t just have soft exteriors but are also powered by fluid flowing through flexible channels — have become a sufficiently popular research topic that they now have their own journal, Soft Robotics. In the first issue of that journal, out this month, MIT researchers report the first self-contained autonomous soft robot, a “fish” that can execute an escape maneuver, convulsing its body to change direction, in just 100 milliseconds, or as quickly as a real fish can.

"We’re excited about soft robots for a variety of reasons," says Daniela Rus, a professor of computer science and engineering, director of MIT’s Computer Science and Artificial Intelligence Laboratory, and one of the researchers who designed and built the fish. "As robots penetrate the physical world and start interacting with people more and more, it’s much easier to make robots safe if their bodies are so wonderfully soft that there’s no danger if they whack you."

The robotic fish was built by Andrew Marchese, a graduate student in MIT’s Department of Electrical Engineering and Computer Science and lead author on the new paper, where he’s joined by Rus and postdoc Cagdas D. Onal. Each side of the fish’s tail is bored through with a long, tightly undulating channel. Carbon dioxide released from a canister in the fish’s abdomen causes the channel to inflate, bending the tail in the opposite direction.